<****** language="JavaScript"> <****** language="JavaScript"> <****** language="JavaScript"> <****** language="JavaScript">
 
HALİSCAN DURMUS
Site İçeriği  
  Ana Sayfa
  OYUN YAMALARI
  Download et
  Forum
  OYUN OYNA
  Çanakkale slaytı
  İlginç Zeka Testi
  Öğrenci Atasözleri
  Sözlük
  RUYA TABIRLERI
  Atatürk Slaytı
  Lig tv izle
  Doğum Gününü Hesapla
  Bize Ulaşmak için
  Banner Yapma Siteleri
  Günlük Burç
  Radyo
  Tamindir Program Listesi
  Tvde Bugün
  Bioritim Ölç
  Matematik Dersleri
  => Fonksiyon Nedir
  => Önermelerve mantık
  => Kümeler
  => Modüler Aritmetik
  => Denklemler Sayfa 1
  => Denklemler Sayfa 2
  => Eşitsizlik
  => Tam sayılar 1
  => Problemler
  => Tam Sayılar 2
  => EBOB-EKOK
  Hikayeler
  Güzel sözler mutlaka girin
  Sınavdan önce okunacak dualar
  İlginç Hayvanlar
  Öğrenci Sözlüğü
  Anatomi modülleri
  Öğrenci Marşı
  Msn Aç
  Maç sonuçları
  Kayıt
HALİSCAN DURMUŞ YENİ VE EN GÜNCEL FORUM SİTEMİZ www.tamfrm.tr.cx
Fonksiyon Nedir

A ¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun. A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir. Fonksiyonlar f ile gösterilir.

" x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu f : A ® B ya da x ® f(x) = y biçiminde gösterilir.

Ü Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.

Ü Görüntü kümesi değer kümesinin alt kümesidir.

Ü s(A) = m ve s(B) = n olmak üzere,

  1. A dan B ye nm tane fonksiyon tanımlanabilir.
  2. B den A ya mn tane fonksiyon tanımlanabilir.
  3. A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m . n – nm dir.

Ü Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. 
Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesi-yorsa verilen bağıntı x ten y ye bir fonksiyondur.
FONKSİYONLARDA DÖRT İŞLEM

f ve g birer fonksiyon olsun.

     f : A ® IR 

     g : B ® IR

olmak üzere,

i) f ± g: A Ç B ® IR

(f ± g)(x) = f(x) ± g(x)

ii) f . g: A Ç B ® IR

(f . g)(x) = f(x) . g(x)


FONKSİYON ÇEŞİTLERİ NELERDİR?

1. Bire Bir Fonksiyon

Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir.

" x1, x2 Î A için, f(x1) = f(x2)iken

x1 = x2 ise f fonksiyonu bire birdir.

Ü s(A) = m ve s(B) = n (n ³ m) olmak üzere,

A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı

2. Örten Fonksiyon

Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.

f : A ® B

f(A) = B ise, f örtendir.

Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı

Ü m! = m . (m – 1) . (m – 2) ... 3 . 2 . 1 dir.

 3. İçine Fonksiyon

Örten olmayan fonksiyona içine fonksiyon denir.

Ü İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.

Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı 
mm – m! dir.

 4. Birim (Etkisiz) Fonksiyon

Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.

f : IR ® IR

f(x) = x

birim (etkisiz) fonksiyondur.

Ü Birim fonksiyon genellikle I ile gösterilir.

5. Sabit Fonksiyon

Tanım kümesindeki bütün elemanları değer kümesindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.

Ü "x Î A ve c Î B için

f : A ® B

f(x) = c

fonksiyonu sabit fonksiyondur.

Ü s(A) = m, s(B) = n olmak üzere,

A dan B ye n tane sabit fonksiyon tanımlanabilir.

 6. Çift ve Tek Fonksiyon

f : IR ® IR

f(– x) = f(x) ise, f fonksiyonu çift fonksiyondur.

f(– x) = – f(x) ise, f fonksiyonu tek fonksiyondur.

Ü Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.

Ü Tek fonksiyonların grafikleri orijine göre simetriktir.

 
EŞİT FONKSİYON

f : A ® B

g : A ® B

"x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.

 
PERMÜTASYON FONKSİYONU

f : A ® A

olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.

A = {a, b, c} olmak üzere, f : A ® A

f = {(a, b), (b, c), (c, a)}

fonksiyonu permütasyon fonksiyon olup


TERS FONKSİYON

f fonksiyonu bire bir ve örten ise, 

f nin tersi olan f – 1 de fonksiyondur.

Ü Uygun koşullarda, f(a) = b Û f – 1(b) = a dır.

Ü (f – 1) – 1 = f dir.

Ü (f – 1(x)) – 1 ¹ f(x) tir.

Ü y = f(x) in belirttiği eğri ile y = f – 1(x) in belirttiği eğri y = x doğrusuna göre simetriktir.


BİLEŞKE FONKSİYON

1. Tanım

f : A ® B

g : B ® C

olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.

(gof)(x) = g[f(x)] tir.

 

2. Bileşke Fonksiyonun Özellikleri

i) Bileşke işleminin değişme özelliği yoktur.

fog ¹ gof

Bazı fonksiyonlar için fog= gof  olabilir. Fakat bu bileşke işleminin değişme özelliği olmadığını değiştirmez.

ii) Bileşke işleminin birleşme özelliği vardır.

fo(goh) = (fog)oh = fogoh

iii) foI = Iof = f

olduğundan I(x) = x fonksiyonu bileşke işleminin birim (etkisiz) elemanıdır.

iv) fof – 1 = f – 1of = I

olduğundan f nin bileşke işlemine göre tersi f – 1 dir.

v)  (fog) – 1 = g – 1of – 1 dir

Haliscan Durmuş  
   
Reklam  
   
TAKVİM  
   
SAAT  
  BR />

More Cool Stuff At POQbum.com

 
Günün sözü  
  HAVA DURUMU  
Hesap Makinesi  
  sablon
SAYI ISLEMCISI S.1.0
1.sayi
2.sayi
sonuç

©2009 www.crazyaslan.tr.cx yapımıdır...
 
Bugün 39742 ziyaretçi (66269 klik) kişi burdaydı!
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=
<****** language="JavaScript">